Specialized ML Models
Beyond text generation, the Universal Runtime provides a comprehensive suite of specialized ML endpoints for document processing, text analysis, and anomaly detection. These endpoints run on the Universal Runtime server (port 11540).
Quick Reference
| Capability | Endpoint | Use Case |
|---|---|---|
| OCR | POST /v1/ocr | Extract text from images/PDFs |
| Document Extraction | POST /v1/documents/extract | Extract structured data from forms |
| Text Classification | POST /v1/classify | Sentiment, spam detection (pre-trained models) |
| Custom Classification | POST /v1/classifier/* | Train your own classifier with few examples |
| Named Entity Recognition | POST /v1/ner | Extract people, places, organizations |
| Reranking | POST /v1/rerank | Improve RAG retrieval accuracy |
| Anomaly Detection | POST /v1/anomaly/* | Detect outliers in numeric/mixed data |
Starting the Universal Runtime
# Start the runtime server
nx start universal-runtime
# Or with custom port
LF_RUNTIME_PORT=8080 nx start universal-runtime
The server runs on http://localhost:11540 by default.
Model Caching
The Universal Runtime caches loaded models in memory for faster inference on repeated requests:
- Default TTL: 5 minutes (300 seconds) of inactivity before unloading
- Environment variable: Set
MODEL_UNLOAD_TIMEOUTto customize (in seconds) - Flash Attention 2: Automatically enabled on CUDA devices for compatible models
# Keep models loaded for 30 minutes
MODEL_UNLOAD_TIMEOUT=1800 nx start universal-runtime
OCR (Text Extraction)
Extract text from images and PDF documents using multiple OCR backends.
Supported Backends
| Backend | Description | Best For |
|---|---|---|
surya | Transformer-based, layout-aware (recommended) | Best accuracy, complex documents |
easyocr | 80+ languages, widely used | Multilingual documents |
paddleocr | Fast, production-optimized | Asian languages, speed |
tesseract | Classic OCR, CPU-only | Simple documents, CPU-only environments |
Using the LlamaFarm API (Recommended)
The easiest way to use OCR is through the LlamaFarm API, which handles file uploads and PDF-to-image conversion automatically:
# Upload a PDF or image directly
curl -X POST http://localhost:8000/v1/vision/ocr \
-F "file=@document.pdf" \
-F "model=easyocr" \
-F "languages=en"
Or with base64-encoded images:
curl -X POST http://localhost:8000/v1/vision/ocr \
-F 'images=["..."]' \
-F "model=surya" \
-F "languages=en"
Supported file types: PDF, PNG, JPG, JPEG, GIF, WebP, BMP, TIFF
Using the Universal Runtime Directly
For more control, you can use the Universal Runtime directly with base64 images:
# OCR with base64 image
curl -X POST http://localhost:11540/v1/ocr \
-H "Content-Type: application/json" \
-d '{
"model": "surya",
"images": ["'$(base64 -w0 document.png)'"],
"languages": ["en"]
}'
PDF Processing Workflow (Universal Runtime)
For multi-page documents using the Universal Runtime directly:
# 1. Upload PDF (auto-converts to images)
curl -X POST http://localhost:11540/v1/files \
-F "file=@document.pdf" \
-F "convert_pdf=true" \
-F "pdf_dpi=150"
# Response: {"id": "file_abc123", "page_count": 5, ...}
# 2. Run OCR on all pages
curl -X POST http://localhost:11540/v1/ocr \
-H "Content-Type: application/json" \
-d '{
"model": "surya",
"file_id": "file_abc123",
"languages": ["en"],
"return_boxes": true
}'
Response Format
{
"object": "list",
"data": [
{
"index": 0,
"text": "Invoice #12345\nDate: 2024-01-15\nTotal: $1,234.56",
"confidence": 0.95,
"boxes": [
{"x1": 10, "y1": 20, "x2": 150, "y2": 40, "text": "Invoice #12345", "confidence": 0.98}
]
}
],
"model": "surya",
"usage": {"images_processed": 1}
}
Document Extraction
Extract structured key-value pairs from forms, invoices, and receipts using vision-language models.
Supported Models
| Model | Description |
|---|---|
naver-clova-ix/donut-base-finetuned-cord-v2 | Receipt/invoice extraction (no OCR needed) |
naver-clova-ix/donut-base-finetuned-docvqa | Document Q&A |
microsoft/layoutlmv3-base-finetuned-docvqa | Document Q&A with layout understanding |
Using the LlamaFarm API (Recommended)
The easiest way to extract data from documents is through the LlamaFarm API:
# Extract from a receipt (file upload)
curl -X POST http://localhost:8000/v1/vision/documents/extract \
-F "file=@receipt.pdf" \
-F "model=naver-clova-ix/donut-base-finetuned-cord-v2" \
-F "task=extraction"
Supported file types: PDF, PNG, JPG, JPEG, GIF, WebP, BMP, TIFF
Extract from Receipt (Universal Runtime)
Using the Universal Runtime directly with a file ID:
curl -X POST http://localhost:11540/v1/documents/extract \
-H "Content-Type: application/json" \
-d '{
"model": "naver-clova-ix/donut-base-finetuned-cord-v2",
"file_id": "file_abc123",
"task": "extraction"
}'
Response Format
{
"object": "list",
"data": [
{
"index": 0,
"confidence": 0.92,
"fields": [
{"key": "store_name", "value": "Coffee Shop", "confidence": 0.95, "bbox": [10, 20, 100, 40]},
{"key": "total", "value": "$15.99", "confidence": 0.98, "bbox": [10, 60, 80, 80]},
{"key": "date", "value": "2024-01-15", "confidence": 0.94, "bbox": [10, 100, 100, 120]}
]
}
]
}
Document Q&A
Ask questions about document content using the LlamaFarm API:
# Document VQA with file upload (LlamaFarm API)
curl -X POST http://localhost:8000/v1/vision/documents/extract \
-F "file=@invoice.pdf" \
-F "model=naver-clova-ix/donut-base-finetuned-docvqa" \
-F "prompts=What is the total amount?,What is the invoice date?" \
-F "task=vqa"
Or using the Universal Runtime directly:
curl -X POST http://localhost:11540/v1/documents/extract \
-H "Content-Type: application/json" \
-d '{
"model": "naver-clova-ix/donut-base-finetuned-docvqa",
"file_id": "file_abc123",
"prompts": ["What is the total amount?", "What is the invoice date?"],
"task": "vqa"
}'
Text Classification (Pre-trained)
Use pre-trained HuggingFace models for common classification tasks like sentiment analysis. No training required - just pick a model and classify.
- Use
/v1/classifywhen a pre-trained model exists for your task (sentiment, spam, toxicity) - Use
/v1/classifier/*when you need custom categories specific to your domain (intent routing, ticket categorization)
Popular Models
| Model | Use Case |
|---|---|
distilbert-base-uncased-finetuned-sst-2-english | Sentiment analysis |
facebook/bart-large-mnli | Zero-shot classification |
cardiffnlp/twitter-roberta-base-sentiment-latest | Social media sentiment |
You can use quantized models for faster inference by appending a quantization suffix: model:Q4_K_M. For example: distilbert-base-uncased-finetuned-sst-2-english:Q4_K_M
Basic Classification
curl -X POST http://localhost:11540/v1/classify \
-H "Content-Type: application/json" \
-d '{
"model": "distilbert-base-uncased-finetuned-sst-2-english",
"texts": [
"I love this product!",
"This is terrible and broken.",
"It works okay I guess."
],
"max_length": 512
}'
Request Fields:
| Field | Type | Required | Default | Description |
|---|---|---|---|---|
model | string | Yes | - | HuggingFace model ID |
texts | array | Yes | - | Texts to classify |
max_length | int | No | auto | Max sequence length (auto-detects: 8192 for ModernBERT, 512 for classic BERT) |
Response Format
{
"object": "list",
"data": [
{"index": 0, "label": "POSITIVE", "score": 0.9998, "all_scores": {"POSITIVE": 0.9998, "NEGATIVE": 0.0002}},
{"index": 1, "label": "NEGATIVE", "score": 0.9995, "all_scores": {"POSITIVE": 0.0005, "NEGATIVE": 0.9995}},
{"index": 2, "label": "POSITIVE", "score": 0.6234, "all_scores": {"POSITIVE": 0.6234, "NEGATIVE": 0.3766}}
],
"model": "distilbert-base-uncased-finetuned-sst-2-english"
}
Custom Text Classification (SetFit)
Train your own text classifier with as few as 8-16 examples per class using SetFit (Sentence Transformer Fine-tuning). Perfect for domain-specific classification tasks.
SetFit uses contrastive learning to fine-tune a sentence-transformer model on your examples, then trains a small classification head. This approach achieves strong performance with minimal labeled data and no GPU required.
When to Use Custom Classification
| Scenario | Use /v1/classify | Use /v1/classifier/* |
|---|---|---|
| Sentiment analysis | ✅ Pre-trained models available | ❌ Overkill |
| Intent routing (booking, support, billing) | ❌ No pre-trained model | ✅ Train on your intents |
| Ticket categorization | ❌ Domain-specific | ✅ Train on your categories |
| Content moderation | ✅ Toxicity models exist | ✅ If you need custom rules |
| Document classification | ❌ Domain-specific | ✅ Train on your doc types |
Workflow Overview
1. Fit model → 2. Predict → 3. Save (optional)
/classifier/fit /classifier/predict /classifier/save
The LlamaFarm API (/v1/ml/classifier/*) provides the same functionality as the Universal Runtime with added features:
- Model Versioning: Automatic timestamped versions when
overwrite: false - Latest Resolution: Use
model-name-latestto auto-resolve to the newest version
# Via LlamaFarm API (port 8000)
curl -X POST http://localhost:8000/v1/ml/classifier/fit ...
# Via Universal Runtime (port 11540)
curl -X POST http://localhost:11540/v1/classifier/fit ...
/v1/classify(pre-trained models) is only available on Universal Runtime (port 11540). It is NOT proxied through the LlamaFarm server./v1/ml/classifier/*(custom SetFit classifiers) is available on the LlamaFarm server (port 8000) and proxies to Universal Runtime.
Step 1: Train Your Classifier
Provide labeled examples (minimum 2, recommended 8-16 per class):
curl -X POST http://localhost:11540/v1/classifier/fit \
-H "Content-Type: application/json" \
-d '{
"model": "intent-classifier",
"base_model": "sentence-transformers/all-MiniLM-L6-v2",
"training_data": [
{"text": "I need to book a flight to NYC", "label": "booking"},
{"text": "Reserve a hotel room for next week", "label": "booking"},
{"text": "Can I get a table for two tonight?", "label": "booking"},
{"text": "Cancel my reservation please", "label": "cancellation"},
{"text": "I want to cancel my booking", "label": "cancellation"},
{"text": "Please remove my appointment", "label": "cancellation"},
{"text": "What is the weather like?", "label": "other"},
{"text": "Tell me a joke", "label": "other"}
],
"num_iterations": 20
}'
Response:
{
"object": "fit_result",
"model": "intent-classifier",
"base_model": "sentence-transformers/all-MiniLM-L6-v2",
"samples_fitted": 8,
"num_classes": 3,
"labels": ["booking", "cancellation", "other"],
"training_time_ms": 1234.56,
"status": "fitted"
}
Step 2: Classify New Texts
curl -X POST http://localhost:11540/v1/classifier/predict \
-H "Content-Type: application/json" \
-d '{
"model": "intent-classifier",
"texts": [
"I want to book a car for tomorrow",
"Please cancel everything",
"How are you doing?"
]
}'
Response:
{
"object": "list",
"data": [
{"text": "I want to book a car for tomorrow", "label": "booking", "score": 0.94, "all_scores": {"booking": 0.94, "cancellation": 0.03, "other": 0.03}},
{"text": "Please cancel everything", "label": "cancellation", "score": 0.91, "all_scores": {"booking": 0.04, "cancellation": 0.91, "other": 0.05}},
{"text": "How are you doing?", "label": "other", "score": 0.87, "all_scores": {"booking": 0.06, "cancellation": 0.07, "other": 0.87}}
],
"model": "intent-classifier"
}
Step 3: Save for Production
Save your trained model to persist across server restarts:
curl -X POST http://localhost:11540/v1/classifier/save \
-H "Content-Type: application/json" \
-d '{"model": "intent-classifier"}'
Response:
{
"object": "save_result",
"model": "intent-classifier",
"path": "~/.llamafarm/models/classifier/intent-classifier",
"status": "saved"
}
SetFit classifiers are stored as directories (not files) under ~/.llamafarm/models/classifier/. Each directory contains:
- Model weights and config
labels.txt- Class labels for the classifier
Note: Models are auto-saved immediately after fitting, so explicit save is optional but recommended for adding descriptions.
Loading Saved Models
After a server restart, load your saved model:
curl -X POST http://localhost:11540/v1/classifier/load \
-H "Content-Type: application/json" \
-d '{"model": "intent-classifier"}'
List & Delete Models
# List all saved classifiers
curl http://localhost:11540/v1/classifier/models
# Delete a model
curl -X DELETE http://localhost:11540/v1/classifier/models/intent-classifier
API Reference
| Endpoint | Method | Description |
|---|---|---|
/v1/classifier/fit | POST | Train a classifier on labeled examples |
/v1/classifier/predict | POST | Classify texts using a trained model |
/v1/classifier/save | POST | Save model to disk |
/v1/classifier/load | POST | Load model from disk |
/v1/classifier/models | GET | List saved models |
/v1/classifier/models/{name} | DELETE | Delete a saved model |
Training Parameters
| Parameter | Type | Default | Description |
|---|---|---|---|
model | string | required | Unique name for your classifier |
base_model | string | all-MiniLM-L6-v2 | Sentence transformer to fine-tune |
training_data | array | required | List of {text, label} objects |
num_iterations | int | 20 | Contrastive learning iterations |
batch_size | int | 16 | Training batch size |
Recommended Base Models
| Model | Size | Speed | Quality |
|---|---|---|---|
sentence-transformers/all-MiniLM-L6-v2 | 80MB | Fast | Good |
sentence-transformers/all-mpnet-base-v2 | 420MB | Medium | Better |
BAAI/bge-small-en-v1.5 | 130MB | Fast | Good |
BAAI/bge-base-en-v1.5 | 440MB | Medium | Better |
Best Practices
- Provide diverse examples: Include variations in phrasing, not just similar sentences
- Balance classes: Aim for similar numbers of examples per class
- Start small: 8-16 examples per class is often sufficient
- Test before saving: Verify accuracy on held-out examples before saving
- Iterate: Add more examples for classes with lower accuracy
Named Entity Recognition (NER)
Extract named entities (people, organizations, locations) from text.
Popular Models
| Model | Description |
|---|---|
dslim/bert-base-NER | English NER (PERSON/ORG/LOC/MISC) |
Jean-Baptiste/roberta-large-ner-english | High-accuracy English NER |
xlm-roberta-large-finetuned-conll03-english | Multilingual NER |
Basic NER
curl -X POST http://localhost:11540/v1/ner \
-H "Content-Type: application/json" \
-d '{
"model": "dslim/bert-base-NER",
"texts": [
"John Smith works at Google in San Francisco.",
"Apple CEO Tim Cook announced new products."
]
}'
Response Format
{
"object": "list",
"data": [
{
"index": 0,
"entities": [
{"text": "John Smith", "label": "PER", "start": 0, "end": 10, "score": 0.99},
{"text": "Google", "label": "ORG", "start": 20, "end": 26, "score": 0.98},
{"text": "San Francisco", "label": "LOC", "start": 30, "end": 43, "score": 0.97}
]
},
{
"index": 1,
"entities": [
{"text": "Apple", "label": "ORG", "start": 0, "end": 5, "score": 0.99},
{"text": "Tim Cook", "label": "PER", "start": 10, "end": 18, "score": 0.98}
]
}
]
}
Reranking (Cross-Encoder)
Improve RAG retrieval accuracy by reranking candidate documents with a cross-encoder model.
Why Rerank?
Cross-encoders are significantly more accurate than bi-encoder similarity (10-20% improvement) and 10-100x faster than LLM-based reranking.
Popular Models
| Model | Description |
|---|---|
cross-encoder/ms-marco-MiniLM-L-6-v2 | Fast, general purpose |
BAAI/bge-reranker-v2-m3 | Multilingual, high accuracy |
cross-encoder/ms-marco-MiniLM-L-12-v2 | Higher accuracy, slower |
Basic Reranking
curl -X POST http://localhost:11540/v1/rerank \
-H "Content-Type: application/json" \
-d '{
"model": "cross-encoder/ms-marco-MiniLM-L-6-v2",
"query": "What are the clinical trial requirements?",
"documents": [
"Clinical trials must follow FDA regulations for safety.",
"The weather in California is sunny.",
"Phase 3 trials require at least 300 participants.",
"Our company was founded in 2010."
],
"top_k": 2,
"return_documents": true
}'
Response Format
{
"object": "list",
"data": [
{"index": 0, "relevance_score": 0.92, "document": "Clinical trials must follow FDA regulations..."},
{"index": 2, "relevance_score": 0.87, "document": "Phase 3 trials require at least 300 participants."}
],
"model": "cross-encoder/ms-marco-MiniLM-L-6-v2"
}
Integration with RAG
Use reranking to improve your RAG pipeline:
# 1. Get initial candidates from vector search (fast, approximate)
candidates = rag_query(query, top_k=20)
# 2. Rerank with cross-encoder (accurate, slower)
reranked = rerank(query, candidates[:20], top_k=5)
# 3. Use top results for LLM context
context = "\n".join([doc["document"] for doc in reranked])
Anomaly Detection
Detect outliers and anomalies in numeric and mixed data using multiple algorithms.
See the dedicated Anomaly Detection Guide for complete documentation.
Quick Example
# 1. Train on normal data
curl -X POST http://localhost:11540/v1/anomaly/fit \
-H "Content-Type: application/json" \
-d '{
"model": "api-monitor",
"backend": "isolation_forest",
"data": [[100, 1024], [105, 1100], [98, 980], [102, 1050]],
"contamination": 0.1
}'
# 2. Detect anomalies in new data
curl -X POST http://localhost:11540/v1/anomaly/detect \
-H "Content-Type: application/json" \
-d '{
"model": "api-monitor",
"data": [[100, 1024], [9999, 50000], [103, 1080]]
}'
File Management Endpoints
The Universal Runtime provides file storage for processing documents across multiple requests.
Upload File
curl -X POST http://localhost:11540/v1/files \
-F "file=@document.pdf" \
-F "convert_pdf=true" \
-F "pdf_dpi=150"
List Files
curl http://localhost:11540/v1/files
Get File Info
curl http://localhost:11540/v1/files/{file_id}
Get File as Images
curl http://localhost:11540/v1/files/{file_id}/images
Delete File
curl -X DELETE http://localhost:11540/v1/files/{file_id}
Files are stored temporarily (5-minute TTL by default).
Next Steps
- Anomaly Detection Guide - Complete anomaly detection documentation
- Universal Runtime Overview - General runtime configuration
- API Reference - Full API documentation