Models
High-level overview of the Models system: strategy, architecture, and quick commands.
Vision & strategy
The Models system provides a config-driven, CLI-first framework for fine-tuning, managing, and deploying custom models.
- Configuration-driven workflows (JSON/YAML)
- Method-agnostic: LoRA, QLoRA, full fine-tune, adapters, prefix tuning
- Dataset-centric: tools to create and validate datasets from your data
- Production-ready: versioning, evaluation, deployment, monitoring
Architecture overview
models/
├── methods/ # Fine-tuning methods (lora, qlora, full_finetune, adapters, ...)
├── datasets/ # Creation, formats, quality control, augmentation
├── config_examples/ # Example configurations
├── registry/ # Model & adapter registry
├── evaluation/ # Benchmarks, metrics, QA
├── deployment/ # Production deployment configs
└── utils/ # Helpers & tests
Core CLI
# Dataset creation
llamafarm models create-dataset --source ./rag/data --format alpaca --output ./datasets/rag_qa.json
# Training
llamafarm models train --config ./config_examples/lora_basic.json --dataset ./datasets/rag_qa.json
# Evaluation
llamafarm models evaluate --model ./trained_models/lora_v1 --benchmark hellaswag
# Deployment
llamafarm models deploy --model ./trained_models/lora_v1 --target kubernetes --replicas 2
# Registry
llamafarm models list --type adapters
llamafarm models register --model ./trained_models/lora_v1 --name "rag_enhancement_v1"
llamafarm models rollback --name "rag_enhancement_v1" --version "1.0.0"
Method selection (quick guide)
- Limited GPU memory: prefer QLoRA or LoRA
- Maximum quality: full fine-tuning with large datasets
- Multi-domain: adapters/registry for hot-swapping
See also: Providers and Adapters pages for runtime integration details.