Skip to main content

API Reference

LlamaFarm provides a comprehensive REST API for managing projects, datasets, chat interactions, and RAG (Retrieval-Augmented Generation) operations. The API follows RESTful conventions and is compatible with OpenAI's chat completion format.

Base URL

The API is served at: http://localhost:8000

All versioned endpoints use the /v1 prefix:

http://localhost:8000/v1

Finding Your Namespace and Project Name

Understanding Namespaces and Projects

LlamaFarm organizes your work into namespaces (organizational containers) and projects (individual configurations):

  • Namespace: A top-level organizational unit (e.g., your username, team name, or organization)
  • Project Name: The unique identifier for a specific LlamaFarm project within a namespace.

From Your llamafarm.yaml

The easiest way to find your namespace and project name is to check your llamafarm.yaml configuration file:

version: v1
name: my-project # This is your project name
namespace: my-org # This is your namespace

From the File System

Projects are stored in:

~/.llamafarm/projects/{namespace}/{project_name}/

For example, if you see:

~/.llamafarm/projects/acme-corp/chatbot/

Then:

  • Namespace: acme-corp
  • Project name: chatbot

Using the API

You can also list projects programmatically:

# List all projects in a namespace
curl http://localhost:8000/v1/projects/my-org

Custom Data Directory

If you've set a custom data directory using the LF_DATA_DIR environment variable, check:

$LF_DATA_DIR/projects/{namespace}/{project_name}/

Authentication

Currently, the API does not require authentication. This is designed for local development environments. For production deployments, implement authentication at the reverse proxy or load balancer level.

Response Format

Success Responses

Successful requests return JSON with appropriate HTTP status codes (200, 201, etc.):

{
"field": "value",
...
}

Error Responses

Error responses follow a consistent format with appropriate HTTP status codes (400, 404, 500, etc.):

{
"detail": "Error message description"
}

Common HTTP status codes:

  • 200 OK - Request succeeded
  • 201 Created - Resource created successfully
  • 400 Bad Request - Invalid request parameters
  • 404 Not Found - Resource not found
  • 422 Unprocessable Entity - Validation error
  • 500 Internal Server Error - Server error

API Endpoints Overview

Projects

  • GET /v1/projects/{namespace} - List projects
  • POST /v1/projects/{namespace} - Create project
  • GET /v1/projects/{namespace}/{project} - Get project details
  • PUT /v1/projects/{namespace}/{project} - Update project configuration
  • DELETE /v1/projects/{namespace}/{project} - Delete project

Chat

  • POST /v1/projects/{namespace}/{project}/chat/completions - Send chat message (OpenAI-compatible)
  • GET /v1/projects/{namespace}/{project}/chat/sessions/{session_id}/history - Get chat history
  • DELETE /v1/projects/{namespace}/{project}/chat/sessions/{session_id} - Delete chat session
  • DELETE /v1/projects/{namespace}/{project}/chat/sessions - Delete all sessions
  • GET /v1/projects/{namespace}/{project}/models - List available models

Datasets

  • GET /v1/projects/{namespace}/{project}/datasets - List datasets
  • POST /v1/projects/{namespace}/{project}/datasets - Create dataset
  • DELETE /v1/projects/{namespace}/{project}/datasets/{dataset} - Delete dataset
  • POST /v1/projects/{namespace}/{project}/datasets/{dataset}/data - Upload file to dataset
  • POST /v1/projects/{namespace}/{project}/datasets/{dataset}/actions - Trigger dataset actions (ingest/process) via Celery tasks
  • DELETE /v1/projects/{namespace}/{project}/datasets/{dataset}/data/{file_hash} - Remove file from dataset

RAG (Retrieval-Augmented Generation)

  • POST /v1/projects/{namespace}/{project}/rag/query - Query RAG system
  • GET /v1/projects/{namespace}/{project}/rag/health - Check RAG health
  • GET /v1/projects/{namespace}/{project}/rag/stats - Get RAG statistics
  • GET /v1/projects/{namespace}/{project}/rag/databases - List databases
  • GET /v1/projects/{namespace}/{project}/rag/databases/{database} - Get database details
  • GET /v1/projects/{namespace}/{project}/rag/databases/{database}/documents - List documents in database
  • POST /v1/projects/{namespace}/{project}/rag/databases - Create database
  • PATCH /v1/projects/{namespace}/{project}/rag/databases/{database} - Update database
  • DELETE /v1/projects/{namespace}/{project}/rag/databases/{database} - Delete database

Tasks

  • GET /v1/projects/{namespace}/{project}/tasks/{task_id} - Get async task status
  • DELETE /v1/projects/{namespace}/{project}/tasks/{task_id} - Cancel running task

Event Logs

  • GET /v1/projects/{namespace}/{project}/event_logs - List event logs
  • GET /v1/projects/{namespace}/{project}/event_logs/{event_id} - Get event details

Examples

  • GET /v1/examples - List available examples
  • GET /v1/examples/{example_id}/datasets - List example datasets
  • POST /v1/examples/{example_id}/import-project - Import example as new project
  • POST /v1/examples/{example_id}/import-data - Import example data into existing project
  • POST /v1/examples/{example_id}/import-dataset - Import specific dataset from example

Models Cache

  • GET /v1/models - List cached models
  • POST /v1/models/download - Download/cache a model
  • POST /v1/models/validate-download - Check disk space before download
  • GET /v1/models/{model_id}/quantizations - List GGUF quantization options
  • DELETE /v1/models/{model_name} - Delete cached model

Vision (OCR & Document Extraction)

  • POST /v1/vision/ocr - OCR text extraction (accepts file upload or base64)
  • POST /v1/vision/documents/extract - Document extraction/VQA (accepts file upload or base64)

ML (Custom Classifiers & Anomaly Detection)

  • POST /v1/ml/classifier/fit - Train custom text classifier (SetFit few-shot)
  • POST /v1/ml/classifier/predict - Classify texts using trained model
  • POST /v1/ml/classifier/save - Save trained classifier to disk
  • POST /v1/ml/classifier/load - Load classifier from disk
  • GET /v1/ml/classifier/models - List saved classifiers
  • DELETE /v1/ml/classifier/models/{name} - Delete saved classifier
  • POST /v1/ml/anomaly/fit - Train anomaly detector
  • POST /v1/ml/anomaly/score - Score data points for anomalies
  • POST /v1/ml/anomaly/detect - Detect anomalies (returns only anomalous points)
  • POST /v1/ml/anomaly/save - Save trained anomaly model
  • POST /v1/ml/anomaly/load - Load anomaly model from disk
  • GET /v1/ml/anomaly/models - List saved anomaly models
  • DELETE /v1/ml/anomaly/models/{filename} - Delete saved anomaly model

Health

  • GET /health - Overall health check
  • GET /health/liveness - Liveness probe

System

  • GET / - Basic hello endpoint
  • GET /info - System information
  • GET /v1/system/version-check - Check for CLI updates
  • GET /v1/system/disk - Get disk space information

Projects API

List Projects

List all projects in a namespace.

Endpoint: GET /v1/projects/{namespace}

Parameters:

  • namespace (path, required): The namespace to list projects from

Response:

{
"total": 2,
"projects": [
{
"namespace": "my-org",
"name": "chatbot",
"config": {
"version": "v1",
"name": "chatbot",
"namespace": "my-org",
"runtime": { ... },
...
}
}
]
}

Example:

curl http://localhost:8000/v1/projects/my-org

Create Project

Create a new project in a namespace.

Endpoint: POST /v1/projects/{namespace}

Parameters:

  • namespace (path, required): The namespace to create the project in

Request Body:

{
"name": "my-new-project",
"config_template": "server" // Optional: server, rag, or custom template name
}

Response:

{
"project": {
"namespace": "my-org",
"name": "my-new-project",
"config": { ... }
}
}

Example:

curl -X POST http://localhost:8000/v1/projects/my-org \
-H "Content-Type: application/json" \
-d '{"name": "chatbot", "config_template": "server"}'

Get Project

Get details of a specific project.

Endpoint: GET /v1/projects/{namespace}/{project}

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name

Response:

{
"project": {
"namespace": "my-org",
"name": "chatbot",
"config": {
"version": "v1",
"name": "chatbot",
"namespace": "my-org",
"runtime": {
"provider": "ollama",
"model": "llama3.2:3b"
},
...
}
}
}

Example:

curl http://localhost:8000/v1/projects/my-org/chatbot

Update Project

Update a project's configuration.

Endpoint: PUT /v1/projects/{namespace}/{project}

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name

Request Body:

{
"config": {
"version": "v1",
"name": "chatbot",
"namespace": "my-org",
"runtime": {
"provider": "ollama",
"model": "llama3.2:3b"
},
...
}
}

Response:

{
"project": {
"namespace": "my-org",
"name": "chatbot",
"config": { ... }
}
}

Example:

curl -X PUT http://localhost:8000/v1/projects/my-org/chatbot \
-H "Content-Type: application/json" \
-d @updated-config.json

Delete Project

Delete a project (currently returns project info; actual deletion not implemented).

Endpoint: DELETE /v1/projects/{namespace}/{project}

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name

Response:

{
"project": {
"namespace": "my-org",
"name": "chatbot",
"config": { ... }
}
}

Chat API

Send Chat Message (OpenAI-Compatible)

Send a chat message to the LLM. This endpoint is compatible with OpenAI's chat completion API.

Endpoint: POST /v1/projects/{namespace}/{project}/chat/completions

Headers:

  • X-Session-ID (optional): Session ID for stateful conversations. If not provided, a new session is created.
  • X-No-Session (optional): Set to any value for stateless mode (no conversation history)

Request Body:

{
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is LlamaFarm?"
}
],
"stream": false,
"temperature": 0.7,
"max_tokens": 1000,
"rag_enabled": true,
"database": "main_db",
"rag_top_k": 5,
"rag_score_threshold": 0.7
}

Request Fields:

  • messages (required): Array of chat messages with role and content
  • model (optional): Select which model to use (OpenAI-compatible, added in PR #263 multi-model support)
  • stream (optional): Enable streaming responses (Server-Sent Events)
  • temperature (optional): Sampling temperature (0.0-2.0)
  • max_tokens (optional): Maximum tokens to generate for the answer (thinking tokens are separate)
  • top_p (optional): Nucleus sampling parameter
  • top_k (optional): Top-k sampling parameter
  • rag_enabled (optional): Enable/disable RAG (uses config default if not specified)
  • database (optional): Database to use for RAG queries
  • rag_top_k (optional): Number of RAG results to retrieve
  • rag_score_threshold (optional): Minimum similarity score for RAG results
  • rag_queries (optional): Array of custom queries for RAG retrieval, overriding the user message. Can be a single query ["my query"] or multiple queries ["query1", "query2"] - results from multiple queries are executed concurrently, merged, and deduplicated
  • think (optional): Enable thinking/reasoning mode for supported models like Qwen3 (default: false)
  • thinking_budget (optional): Maximum tokens for thinking process when think: true (default: 1024)

Response (Non-Streaming):

{
"id": "chatcmpl-123",
"object": "chat.completion",
"created": 1677652288,
"model": "llama3.2:3b",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "LlamaFarm is a framework for building AI applications..."
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 20,
"completion_tokens": 100,
"total_tokens": 120
}
}

Response Headers:

  • X-Session-ID: The session ID (only in stateful mode)

Streaming Response:

When stream: true, the response is sent as Server-Sent Events:

data: {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1677652288,"model":"llama3.2:3b","choices":[{"index":0,"delta":{"role":"assistant","content":"Llama"},"finish_reason":null}]}

data: {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1677652288,"model":"llama3.2:3b","choices":[{"index":0,"delta":{"content":"Farm"},"finish_reason":null}]}

data: [DONE]

Example (Non-Streaming):

curl -X POST http://localhost:8000/v1/projects/my-org/chatbot/chat/completions \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": "Hello!"}
]
}'

Example (Streaming):

curl -X POST http://localhost:8000/v1/projects/my-org/chatbot/chat/completions \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": "Hello!"}
],
"stream": true
}'

Example (Stateless):

curl -X POST http://localhost:8000/v1/projects/my-org/chatbot/chat/completions \
-H "Content-Type: application/json" \
-H "X-No-Session: true" \
-d '{
"messages": [
{"role": "user", "content": "Hello!"}
]
}'

Example (With RAG):

curl -X POST http://localhost:8000/v1/projects/my-org/chatbot/chat/completions \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": "What are the FDA regulations?"}
],
"rag_enabled": true,
"database": "fda_db",
"rag_top_k": 10
}'

Example (With Thinking/Reasoning):

For models that support chain-of-thought reasoning (like Qwen3), enable thinking mode to see the model's reasoning process:

curl -X POST http://localhost:8000/v1/projects/my-org/chatbot/chat/completions \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": "What is 15% of 85?"}
],
"think": true,
"thinking_budget": 512,
"max_tokens": 200
}'

Response with Thinking:

{
"id": "chatcmpl-123",
"object": "chat.completion",
"created": 1677652288,
"model": "Qwen3-1.7B",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "15% of 85 is **12.75**."
},
"finish_reason": "stop"
}
],
"thinking": {
"content": "To find 15% of 85, I need to multiply 85 by 0.15. Let me calculate: 85 × 0.15 = 12.75.",
"tokens": null
}
}

Token Allocation with Thinking:

  • max_tokens: Controls the answer length (default: 512)
  • thinking_budget: Controls the thinking length (default: 1024 when enabled)
  • Total generation = thinking_budget + max_tokens

This ensures your answer isn't cut short by the thinking process.

Example (Custom RAG Query):

Override the default RAG query (which uses the user message) with a custom search query. This is useful when the user's question is conversational but you want specific technical retrieval:

curl -X POST http://localhost:8000/v1/projects/my-org/chatbot/chat/completions \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": "Can you summarize the key findings?"}
],
"rag_enabled": true,
"database": "research_db",
"rag_queries": ["clinical trial results primary endpoints efficacy safety"]
}'

Example (Multiple Custom RAG Queries):

Execute multiple search queries concurrently and merge the results. This is useful for comparative analysis or comprehensive retrieval:

curl -X POST http://localhost:8000/v1/projects/my-org/chatbot/chat/completions \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": "Compare the two approaches"}
],
"rag_enabled": true,
"database": "research_db",
"rag_queries": [
"machine learning neural network methodology",
"traditional statistical analysis regression"
],
"rag_top_k": 10
}'

Results from multiple queries are automatically executed concurrently, merged, deduplicated by content, sorted by relevance score, and limited to rag_top_k total results.

Get Chat History

Retrieve conversation history for a session.

Endpoint: GET /v1/projects/{namespace}/{project}/chat/sessions/{session_id}/history

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name
  • session_id (path, required): Session ID

Response:

{
"messages": [
{
"role": "user",
"content": "Hello!"
},
{
"role": "assistant",
"content": "Hi! How can I help you today?"
}
]
}

Example:

curl http://localhost:8000/v1/projects/my-org/chatbot/chat/sessions/abc-123/history

Delete Chat Session

Delete a specific chat session and its history.

Endpoint: DELETE /v1/projects/{namespace}/{project}/chat/sessions/{session_id}

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name
  • session_id (path, required): Session ID

Response:

{
"message": "Session abc-123 deleted"
}

Example:

curl -X DELETE http://localhost:8000/v1/projects/my-org/chatbot/chat/sessions/abc-123

Delete All Chat Sessions

Delete all chat sessions for a project.

Endpoint: DELETE /v1/projects/{namespace}/{project}/chat/sessions

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name

Response:

{
"message": "Deleted 5 session(s)",
"count": 5
}

Example:

curl -X DELETE http://localhost:8000/v1/projects/my-org/chatbot/chat/sessions

List Available Models

List all configured models for a project.

Endpoint: GET /v1/projects/{namespace}/{project}/models

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name

Response:

{
"total": 2,
"models": [
{
"name": "fast-model",
"provider": "ollama",
"model": "llama3.2:3b",
"base_url": "http://localhost:11434/v1",
"default": true,
"description": "Fast model for quick responses"
},
{
"name": "smart-model",
"provider": "ollama",
"model": "llama3.2:70b",
"base_url": "http://localhost:11434/v1",
"default": false,
"description": "Larger model for complex tasks"
}
]
}

Example:

curl http://localhost:8000/v1/projects/my-org/chatbot/models

Datasets API

List Datasets

List all datasets in a project.

Endpoint: GET /v1/projects/{namespace}/{project}/datasets

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name
  • include_extra_details (query, optional): Include detailed file information (default: true)

Response:

{
"total": 2,
"datasets": [
{
"name": "research_papers",
"database": "main_db",
"data_processing_strategy": "universal_processor",
"files": ["abc123", "def456"],
"details": {
"total_files": 2,
"total_size_bytes": 1048576,
"file_details": [
{
"hash": "abc123",
"original_filename": "paper1.pdf",
"size": 524288,
"timestamp": 1677652288.0
}
]
}
}
]
}

Example:

curl http://localhost:8000/v1/projects/my-org/chatbot/datasets

Get Available Strategies

Get available data processing strategies and databases for a project.

Endpoint: GET /v1/projects/{namespace}/{project}/datasets/strategies

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name

Response:

{
"data_processing_strategies": ["universal_processor", "custom_strategy"],
"databases": ["main_db", "research_db"]
}

Example:

curl http://localhost:8000/v1/projects/my-org/chatbot/datasets/strategies

Create Dataset

Create a new dataset.

Endpoint: POST /v1/projects/{namespace}/{project}/datasets

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name

Request Body:

{
"name": "research_papers",
"data_processing_strategy": "universal_processor",
"database": "main_db"
}

Response:

{
"dataset": {
"name": "research_papers",
"database": "main_db",
"data_processing_strategy": "universal_processor",
"files": []
}
}

Example:

curl -X POST http://localhost:8000/v1/projects/my-org/chatbot/datasets \
-H "Content-Type: application/json" \
-d '{
"name": "research_papers",
"data_processing_strategy": "universal_processor",
"database": "main_db"
}'

Delete Dataset

Delete a dataset.

Endpoint: DELETE /v1/projects/{namespace}/{project}/datasets/{dataset}

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name
  • dataset (path, required): Dataset name

Response:

{
"dataset": {
"name": "research_papers",
"database": "main_db",
"data_processing_strategy": "universal_processor",
"files": []
}
}

Example:

curl -X DELETE http://localhost:8000/v1/projects/my-org/chatbot/datasets/research_papers

Upload File to Dataset

Upload a file to a dataset (stores the file but does not process it).

Endpoint: POST /v1/projects/{namespace}/{project}/datasets/{dataset}/data

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name
  • dataset (path, required): Dataset name

Request:

  • Content-Type: multipart/form-data
  • Body: File upload with field name file

Response:

{
"filename": "paper1.pdf",
"hash": "abc123def456",
"processed": false
}

Example:

curl -X POST http://localhost:8000/v1/projects/my-org/chatbot/datasets/research_papers/data \
-F "file=@paper1.pdf"

Process Dataset

Processing is now driven exclusively through the dataset actions endpoint, which queues Celery tasks and returns a task ID you can poll later.

Endpoint: POST /v1/projects/{namespace}/{project}/datasets/{dataset}/actions

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name
  • dataset (path, required): Dataset name
  • action_type (body, required): "process" (alias "ingest")

Request Body:

{
"action_type": "process"
}

Response:

{
"message": "Accepted",
"task_uri": "http://localhost:8000/v1/projects/my-org/chatbot/tasks/8f6f9c2a",
"task_id": "8f6f9c2a"
}

Use task_uri/task_id with GET /v1/projects/{namespace}/{project}/tasks/{task_id} to monitor progress. When the Celery task finishes, the result payload matches the historical ProcessDatasetResponse structure (processed/skipped/failed counts plus per-file details).

Example:

curl -X POST http://localhost:8000/v1/projects/my-org/chatbot/datasets/research_papers/actions \
-H "Content-Type: application/json" \
-d '{"action_type":"process"}'

Remove File from Dataset

Remove a file from a dataset.

Endpoint: DELETE /v1/projects/{namespace}/{project}/datasets/{dataset}/data/{file_hash}

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name
  • dataset (path, required): Dataset name
  • file_hash (path, required): Hash of the file to remove
  • remove_from_disk (query, optional): Also delete the file from disk (default: false)

Response:

{
"file_hash": "abc123"
}

Example:

curl -X DELETE http://localhost:8000/v1/projects/my-org/chatbot/datasets/research_papers/data/abc123

Example (Remove from disk):

curl -X DELETE "http://localhost:8000/v1/projects/my-org/chatbot/datasets/research_papers/data/abc123?remove_from_disk=true"

RAG API

Query RAG System

Perform a semantic search query against a RAG database.

Endpoint: POST /v1/projects/{namespace}/{project}/rag/query

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name

Request Body:

{
"query": "What are the clinical trial requirements?",
"database": "fda_db",
"top_k": 5,
"score_threshold": 0.7,
"retrieval_strategy": "hybrid",
"metadata_filters": {
"document_type": "regulation"
}
}

Request Fields:

  • query (required): The search query text
  • database (optional): Database name (uses default if not specified)
  • top_k (optional): Number of results to return (default: 5)
  • score_threshold (optional): Minimum similarity score
  • retrieval_strategy (optional): Strategy to use for retrieval
  • metadata_filters (optional): Filter results by metadata
  • distance_metric (optional): Distance metric to use
  • hybrid_alpha (optional): Alpha parameter for hybrid search
  • rerank_model (optional): Model to use for reranking
  • query_expansion (optional): Enable query expansion
  • max_tokens (optional): Maximum tokens in results

Response:

{
"query": "What are the clinical trial requirements?",
"results": [
{
"content": "Clinical trials must follow FDA regulations...",
"score": 0.92,
"metadata": {
"document_id": "fda_21cfr312",
"page": 5,
"document_type": "regulation"
},
"chunk_id": "chunk_123",
"document_id": "fda_21cfr312"
}
],
"total_results": 5,
"processing_time_ms": 45.2,
"retrieval_strategy_used": "hybrid",
"database_used": "fda_db"
}

Example:

curl -X POST http://localhost:8000/v1/projects/my-org/chatbot/rag/query \
-H "Content-Type: application/json" \
-d '{
"query": "What are the clinical trial requirements?",
"database": "fda_db",
"top_k": 5
}'

List RAG Databases

List all configured RAG databases and their associated strategies for a project.

Endpoint: GET /v1/projects/{namespace}/{project}/rag/databases

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name

Response:

{
"databases": [
{
"name": "main_db",
"type": "ChromaStore",
"is_default": true,
"embedding_strategies": [
{
"name": "default_embeddings",
"type": "OllamaEmbedder",
"priority": 0,
"is_default": true
}
],
"retrieval_strategies": [
{
"name": "basic_search",
"type": "BasicSimilarityStrategy",
"is_default": true
}
]
}
],
"default_database": "main_db"
}

Example:

curl http://localhost:8000/v1/projects/my-org/chatbot/rag/databases

Get Database Details

Get detailed information about a specific RAG database including its configuration and dependent datasets.

Endpoint: GET /v1/projects/{namespace}/{project}/rag/databases/{database_name}

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name
  • database_name (path, required): Name of the database

Response:

{
"name": "main_db",
"type": "ChromaStore",
"config": {
"collection_name": "documents",
"distance_function": "cosine"
},
"embedding_strategies": [
{
"name": "default_embeddings",
"type": "OllamaEmbedder",
"config": {
"model": "nomic-embed-text",
"dimension": 768
},
"priority": 0
}
],
"retrieval_strategies": [
{
"name": "basic_search",
"type": "BasicSimilarityStrategy",
"config": { "top_k": 10 },
"default": true
}
],
"default_embedding_strategy": "default_embeddings",
"default_retrieval_strategy": "basic_search",
"dependent_datasets": ["research_papers", "documentation"]
}

Example:

curl http://localhost:8000/v1/projects/my-org/chatbot/rag/databases/main_db

Create Database

Create a new RAG database in the project configuration.

Endpoint: POST /v1/projects/{namespace}/{project}/rag/databases

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name

Request Body:

{
"name": "new_database",
"type": "ChromaStore",
"config": {
"collection_name": "my_collection",
"distance_function": "cosine"
},
"embedding_strategies": [
{
"name": "embeddings",
"type": "OllamaEmbedder",
"config": {
"model": "nomic-embed-text",
"dimension": 768
}
}
],
"retrieval_strategies": [
{
"name": "basic_search",
"type": "BasicSimilarityStrategy",
"config": { "top_k": 10 },
"default": true
}
]
}

Response (201 Created):

{
"database": {
"name": "new_database",
"type": "ChromaStore",
"is_default": false,
"embedding_strategies": [...],
"retrieval_strategies": [...]
}
}

Example:

curl -X POST http://localhost:8000/v1/projects/my-org/chatbot/rag/databases \
-H "Content-Type: application/json" \
-d '{
"name": "new_database",
"type": "ChromaStore",
"embedding_strategies": [
{"name": "embeddings", "type": "OllamaEmbedder", "config": {"model": "nomic-embed-text"}}
],
"retrieval_strategies": [
{"name": "basic", "type": "BasicSimilarityStrategy", "config": {}, "default": true}
]
}'

Update Database

Update a RAG database's mutable fields. Note: name and type are immutable.

Endpoint: PATCH /v1/projects/{namespace}/{project}/rag/databases/{database_name}

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name
  • database_name (path, required): Name of the database

Request Body (all fields optional):

{
"config": {
"distance_function": "euclidean"
},
"embedding_strategies": [...],
"retrieval_strategies": [...],
"default_embedding_strategy": "new_default",
"default_retrieval_strategy": "reranked_search"
}

Response:

{
"name": "main_db",
"type": "ChromaStore",
"config": {...},
"embedding_strategies": [...],
"retrieval_strategies": [...],
"default_embedding_strategy": "new_default",
"default_retrieval_strategy": "reranked_search",
"dependent_datasets": []
}

Example - Add a reranking strategy:

curl -X PATCH http://localhost:8000/v1/projects/my-org/chatbot/rag/databases/main_db \
-H "Content-Type: application/json" \
-d '{
"retrieval_strategies": [
{"name": "basic_search", "type": "BasicSimilarityStrategy", "config": {"top_k": 10}},
{"name": "reranked_search", "type": "CrossEncoderRerankedStrategy", "config": {"model_name": "reranker", "initial_k": 30}}
],
"default_retrieval_strategy": "reranked_search"
}'

Delete Database

Delete a RAG database from the project. Fails if any datasets depend on this database.

Endpoint: DELETE /v1/projects/{namespace}/{project}/rag/databases/{database_name}

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name
  • database_name (path, required): Name of the database
  • delete_collection (query, optional): Whether to delete the underlying vector store collection. Set to false to only remove from config. Default: true

Response (200 OK):

{
"message": "Database 'old_db' deleted successfully",
"database": {
"name": "old_db",
"type": "ChromaStore",
...
},
"collection_deleted": true
}

Error Response (409 Conflict - has dependent datasets):

{
"detail": "Cannot delete database 'main_db': 2 dataset(s) depend on it. Delete or reassign these datasets first: ['dataset1', 'dataset2']"
}

Example:

# Delete database and its collection
curl -X DELETE http://localhost:8000/v1/projects/my-org/chatbot/rag/databases/old_db

# Only remove from config, keep the vector store data
curl -X DELETE "http://localhost:8000/v1/projects/my-org/chatbot/rag/databases/old_db?delete_collection=false"

Check RAG Health

Get health status of the RAG system and databases.

Endpoint: GET /v1/projects/{namespace}/{project}/rag/health

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name
  • database (query, optional): Specific database to check (uses default if not specified)

Response:

{
"status": "healthy",
"database": "main_db",
"components": {
"vector_store": {
"name": "vector_store",
"status": "healthy",
"latency": 15.2,
"message": "Vector store operational"
},
"embeddings": {
"name": "embeddings",
"status": "healthy",
"latency": 8.5,
"message": "Embedding service operational"
}
},
"last_check": "2024-01-15T10:30:00Z",
"issues": null
}

Response Fields:

  • status: Overall health status (healthy, degraded, unhealthy)
  • database: Database that was checked
  • components: Individual component health checks
  • last_check: Timestamp of the health check
  • issues: Array of issues if any problems detected

Component Health:

  • name: Component identifier
  • status: Component status (healthy, degraded, unhealthy)
  • latency: Response time in milliseconds
  • message: Optional status message

Example:

curl http://localhost:8000/v1/projects/my-org/chatbot/rag/health

Example (Specific database):

curl "http://localhost:8000/v1/projects/my-org/chatbot/rag/health?database=main_db"

Get RAG Statistics

Get statistics for a RAG database including vector counts and storage usage.

Endpoint: GET /v1/projects/{namespace}/{project}/rag/stats

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name
  • database (query, optional): Specific database to get stats for (uses default if not specified)

Response:

{
"database": "main_db",
"vector_count": 1250,
"storage_bytes": 52428800,
"storage_human": "50 MB",
"embedding_dimension": 768,
"collection_name": "documents",
"last_updated": "2024-01-15T10:30:00Z"
}

Example:

curl http://localhost:8000/v1/projects/my-org/chatbot/rag/stats

Example (Specific database):

curl "http://localhost:8000/v1/projects/my-org/chatbot/rag/stats?database=research_db"

List Documents in Database

List all documents stored in a RAG database with their metadata.

Endpoint: GET /v1/projects/{namespace}/{project}/rag/databases/{database_name}/documents

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name
  • database_name (path, required): Name of the database
  • limit (query, optional): Maximum documents to return (1-1000, default: 50)

Response:

[
{
"id": "abc123def456",
"filename": "clinical_trial_report.pdf",
"chunk_count": 45,
"size_bytes": 1048576,
"parser_used": "PDFParser_LlamaIndex",
"date_ingested": "2024-01-15T10:30:00Z",
"metadata": {
"document_type": "report",
"source_dataset": "research_papers"
}
},
{
"id": "789xyz",
"filename": "fda_guidelines.pdf",
"chunk_count": 128,
"size_bytes": 2097152,
"parser_used": "PDFParser_PyPDF2",
"date_ingested": "2024-01-14T15:20:00Z",
"metadata": null
}
]

Example:

curl http://localhost:8000/v1/projects/my-org/chatbot/rag/databases/main_db/documents

Example (With limit):

curl "http://localhost:8000/v1/projects/my-org/chatbot/rag/databases/main_db/documents?limit=100"

Tasks API

Get Task Status

Get the status of an asynchronous task.

Endpoint: GET /v1/projects/{namespace}/{project}/tasks/{task_id}

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name
  • task_id (path, required): Task ID returned from async operations

Response:

{
"task_id": "task-123-abc",
"state": "SUCCESS",
"meta": {
"current": 2,
"total": 2
},
"result": {
"processed_files": 2,
"failed_files": 0
},
"error": null,
"traceback": null
}

Task States:

  • PENDING - Task is queued
  • STARTED - Task is running
  • SUCCESS - Task completed successfully
  • FAILURE - Task failed with error
  • RETRY - Task is being retried

Example:

curl http://localhost:8000/v1/projects/my-org/chatbot/tasks/task-123-abc

Cancel Task

Cancel a running task and revert any files that were successfully processed.

Endpoint: DELETE /v1/projects/{namespace}/{project}/tasks/{task_id}

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name
  • task_id (path, required): Task ID to cancel

Description:

This endpoint is primarily used for cancelling dataset processing operations. When a task is cancelled:

  1. All pending Celery tasks are revoked (prevented from starting)
  2. Running tasks are gracefully stopped (current work finishes)
  3. The task is marked as cancelled in the backend
  4. Any files that were successfully processed have their chunks removed from the vector store

Response:

{
"message": "Task cancelled and 3 file(s) reverted",
"task_id": "task-123-abc",
"cancelled": true,
"pending_tasks_cancelled": 5,
"running_tasks_at_cancel": 2,
"files_reverted": 3,
"files_failed_to_revert": 0,
"errors": null,
"already_completed": false,
"already_cancelled": false
}

Response Fields:

  • message - Human-readable status message
  • task_id - The ID of the cancelled task
  • cancelled - Whether the task was successfully cancelled
  • pending_tasks_cancelled - Number of queued tasks that were stopped
  • running_tasks_at_cancel - Number of tasks that were running when cancelled
  • files_reverted - Number of files whose chunks were successfully removed
  • files_failed_to_revert - Number of files that failed to clean up
  • errors - Array of cleanup errors (if any)
  • already_completed - True if task had already completed before cancellation
  • already_cancelled - True if task was already cancelled

Edge Cases:

Task Already Completed:

{
"message": "Task already success",
"task_id": "task-123-abc",
"cancelled": false,
"already_completed": true,
...
}

Task Already Cancelled:

{
"message": "Task already cancelled",
"task_id": "task-123-abc",
"cancelled": true,
"already_cancelled": true,
"files_reverted": 3,
...
}

Cleanup Failures:

{
"message": "Task cancelled with cleanup issues: 3 reverted, 1 failed",
"task_id": "task-123-abc",
"cancelled": true,
"files_reverted": 3,
"files_failed_to_revert": 1,
"errors": [
{
"file_hash": "abc123def456",
"error": "Vector store connection timeout"
}
],
...
}

Example:

# Cancel a running dataset processing task
curl -X DELETE http://localhost:8000/v1/projects/my-org/chatbot/tasks/task-123-abc

HTTP Status Codes:

  • 200 OK - Task cancellation succeeded (or task already completed/cancelled)
  • 404 Not Found - Task not found or not a cancellable task type
  • 500 Internal Server Error - Server error during cancellation

Notes:

  • Only group tasks (dataset processing) can be cancelled
  • Security: Tasks can only be cancelled by the namespace/project they belong to
  • Cancellation is idempotent (safe to call multiple times)
  • Cleanup failures don't prevent cancellation from succeeding
  • Successfully processed files are automatically reverted
  • Manual cleanup is available via POST /v1/projects/{namespace}/{project}/datasets/{dataset}/cleanup/{file_hash} if automatic cleanup fails

Examples API

List Examples

List all available example projects.

Endpoint: GET /v1/examples

Response:

{
"examples": [
{
"id": "fda_rag",
"slug": "fda_rag",
"title": "FDA RAG Example",
"description": "Example using FDA warning letters",
"primaryModel": "llama3.2:3b",
"tags": ["rag", "healthcare"],
"dataset_count": 1,
"data_size_bytes": 2097152,
"data_size_human": "2.0MB",
"project_size_bytes": 4096,
"project_size_human": "4.0KB",
"updated_at": "2024-01-15T10:30:00"
}
]
}

Example:

curl http://localhost:8000/v1/examples

Import Example as Project

Import an example as a new project.

Endpoint: POST /v1/examples/{example_id}/import-project

Parameters:

  • example_id (path, required): Example ID to import

Request Body:

{
"namespace": "my-org",
"name": "my-fda-project",
"process": true
}

Response:

{
"project": "my-fda-project",
"namespace": "my-org",
"datasets": ["fda_letters"],
"task_ids": ["task-123-abc"]
}

Example:

curl -X POST http://localhost:8000/v1/examples/fda_rag/import-project \
-H "Content-Type: application/json" \
-d '{
"namespace": "my-org",
"name": "my-fda-project",
"process": true
}'

Import Example Data

Import example data into an existing project.

Endpoint: POST /v1/examples/{example_id}/import-data

Parameters:

  • example_id (path, required): Example ID to import data from

Request Body:

{
"namespace": "my-org",
"project": "my-project",
"include_strategies": true,
"process": true
}

Response:

{
"project": "my-project",
"namespace": "my-org",
"datasets": ["fda_letters"],
"task_ids": ["task-456-def"]
}

Example:

curl -X POST http://localhost:8000/v1/examples/fda_rag/import-data \
-H "Content-Type: application/json" \
-d '{
"namespace": "my-org",
"project": "my-project",
"include_strategies": true,
"process": true
}'

Health API

Overall Health Check

Check overall system health.

Endpoint: GET /health

Response:

{
"status": "healthy",
"services": {
"api": "healthy",
"celery": "healthy",
"redis": "healthy"
}
}

Example:

curl http://localhost:8000/health

Liveness Probe

Simple liveness check for container orchestration.

Endpoint: GET /health/liveness

Response:

{
"status": "alive"
}

Example:

curl http://localhost:8000/health/liveness

System Info

Root Endpoint

Basic hello endpoint.

Endpoint: GET /

Response:

{
"message": "Hello, World!"
}

System Information

Get system version and configuration info.

Endpoint: GET /info

Response:

{
"version": "0.1.0",
"data_directory": "/Users/username/.llamafarm"
}

Example:

curl http://localhost:8000/info

Check for CLI Updates

Check if a newer version of the CLI is available.

Endpoint: GET /v1/system/version-check

Response:

{
"current_version": "0.0.17",
"latest_version": "0.0.18",
"name": "v0.0.18",
"release_notes": "### Features\n- New feature X\n- Improved Y",
"release_url": "https://github.com/llama-farm/llamafarm/releases/tag/v0.0.18",
"published_at": "2024-01-15T10:30:00Z",
"from_cache": false,
"install": {
"mac_linux": "curl -fsSL https://raw.githubusercontent.com/llama-farm/llamafarm/main/install.sh | bash",
"windows": "winget install LlamaFarm.CLI"
}
}

Example:

curl http://localhost:8000/v1/system/version-check

Get Disk Space

Get disk space information for the HuggingFace cache and system disk.

Endpoint: GET /v1/system/disk

Response:

{
"cache": {
"total_bytes": 500000000000,
"used_bytes": 200000000000,
"free_bytes": 300000000000,
"path": "/Users/username/.cache/huggingface",
"percent_free": 60.0
},
"system": {
"total_bytes": 1000000000000,
"used_bytes": 400000000000,
"free_bytes": 600000000000,
"path": "/",
"percent_free": 60.0
}
}

Response Fields:

  • cache: Disk info for the HuggingFace cache directory (where models are stored)
  • system: Disk info for the system root directory
  • Each contains: total_bytes, used_bytes, free_bytes, path, percent_free

Example:

curl http://localhost:8000/v1/system/disk

Event Logs API

The Event Logs API provides observability into project operations including inference calls, RAG processing, and other events.

List Event Logs

List event logs for a project with optional filtering.

Endpoint: GET /v1/projects/{namespace}/{project}/event_logs

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name
  • type (query, optional): Filter by event type (e.g., "inference", "rag_processing")
  • start_time (query, optional): Filter events after this timestamp (ISO 8601 format)
  • end_time (query, optional): Filter events before this timestamp (ISO 8601 format)
  • limit (query, optional): Maximum number of events to return (1-100, default: 10)
  • offset (query, optional): Number of events to skip for pagination

Response:

{
"total": 42,
"events": [
{
"event_id": "evt_20240115_103000_inference_abc123",
"type": "inference",
"timestamp": "2024-01-15T10:30:00Z",
"summary": {
"model": "llama3.2:3b",
"tokens": 150,
"duration_ms": 1200
}
}
],
"limit": 10,
"offset": 0
}

Example:

# List recent events
curl http://localhost:8000/v1/projects/my-org/chatbot/event_logs

# Filter by type with pagination
curl "http://localhost:8000/v1/projects/my-org/chatbot/event_logs?type=inference&limit=20"

# Filter by time range
curl "http://localhost:8000/v1/projects/my-org/chatbot/event_logs?start_time=2024-01-15T00:00:00Z"

Get Event Details

Get full details of a specific event including all sub-events.

Endpoint: GET /v1/projects/{namespace}/{project}/event_logs/{event_id}

Parameters:

  • namespace (path, required): Project namespace
  • project (path, required): Project name
  • event_id (path, required): Event ID

Response:

{
"event_id": "evt_20240115_103000_inference_abc123",
"type": "inference",
"timestamp": "2024-01-15T10:30:00Z",
"data": {
"model": "llama3.2:3b",
"messages": [...],
"response": {...},
"tokens": {
"prompt": 50,
"completion": 100,
"total": 150
},
"duration_ms": 1200
},
"sub_events": [...]
}

Example:

curl http://localhost:8000/v1/projects/my-org/chatbot/event_logs/evt_20240115_103000_inference_abc123

Models Cache API

The Models Cache API allows you to manage locally cached models (primarily HuggingFace models used by Universal Runtime).

List Cached Models

List all models cached on disk.

Endpoint: GET /v1/models

Parameters:

  • provider (query, optional): Model provider (default: "universal")

Response:

{
"data": [
{
"model_id": "cross-encoder/ms-marco-MiniLM-L-6-v2",
"size_bytes": 90000000,
"size_human": "90MB",
"last_modified": "2024-01-15T10:30:00Z",
"revisions": ["main"]
}
]
}

Example:

curl http://localhost:8000/v1/models

Download/Cache Model

Download and cache a model. Returns a streaming response with progress events.

Endpoint: POST /v1/models/download

Request Body:

{
"provider": "universal",
"model_name": "cross-encoder/ms-marco-MiniLM-L-6-v2"
}

Response: Server-Sent Events stream with progress updates:

data: {"event": "progress", "downloaded": 45000000, "total": 90000000, "percent": 50}

data: {"event": "complete", "model_name": "cross-encoder/ms-marco-MiniLM-L-6-v2"}

Example:

curl -X POST http://localhost:8000/v1/models/download \
-H "Content-Type: application/json" \
-d '{"model_name": "cross-encoder/ms-marco-MiniLM-L-6-v2"}'

Validate Download

Check if there's sufficient disk space for a model download before starting.

Endpoint: POST /v1/models/validate-download

Request Body:

{
"model_name": "unsloth/Qwen3-1.7B-GGUF"
}

Response:

{
"can_download": true,
"warning": false,
"message": "Sufficient disk space available",
"available_bytes": 107374182400,
"required_bytes": 1073741824,
"cache_info": {
"total_bytes": 500000000000,
"used_bytes": 200000000000,
"free_bytes": 300000000000,
"path": "/Users/username/.cache/huggingface",
"percent_free": 60.0
},
"system_info": {
"total_bytes": 1000000000000,
"used_bytes": 400000000000,
"free_bytes": 600000000000,
"path": "/",
"percent_free": 60.0
}
}

Response Fields:

  • can_download: Whether download can proceed (false if critically low space)
  • warning: Whether space is low but download can proceed
  • message: Human-readable status message
  • available_bytes: Available disk space in bytes
  • required_bytes: Estimated space required for download
  • cache_info: Disk info for HuggingFace cache location
  • system_info: Disk info for system root

Example:

curl -X POST http://localhost:8000/v1/models/validate-download \
-H "Content-Type: application/json" \
-d '{"model_name": "unsloth/Qwen3-1.7B-GGUF"}'

Get GGUF Quantization Options

List all available GGUF quantization options for a model with file sizes.

Endpoint: GET /v1/models/{model_id}/quantizations

Parameters:

  • model_id (path, required): HuggingFace model identifier (e.g., "unsloth/Qwen3-1.7B-GGUF")

Response:

{
"options": [
{
"filename": "Qwen3-1.7B-Q4_K_M.gguf",
"quantization": "Q4_K_M",
"size_bytes": 1073741824,
"size_human": "1.0 GB"
},
{
"filename": "Qwen3-1.7B-Q8_0.gguf",
"quantization": "Q8_0",
"size_bytes": 1879048192,
"size_human": "1.75 GB"
},
{
"filename": "Qwen3-1.7B-F16.gguf",
"quantization": "F16",
"size_bytes": 3489660928,
"size_human": "3.25 GB"
}
]
}

Example:

curl http://localhost:8000/v1/models/unsloth/Qwen3-1.7B-GGUF/quantizations

Delete Cached Model

Delete a cached model from disk.

Endpoint: DELETE /v1/models/{model_name}

Parameters:

  • model_name (path, required): The model identifier to delete
  • provider (query, optional): Model provider (default: "universal")

Response:

{
"model_name": "cross-encoder/ms-marco-MiniLM-L-6-v2",
"revisions_deleted": 1,
"size_freed": 90000000,
"path": "/Users/username/.cache/huggingface/hub/models--cross-encoder--ms-marco-MiniLM-L-6-v2"
}

Example:

curl -X DELETE "http://localhost:8000/v1/models/cross-encoder/ms-marco-MiniLM-L-6-v2"

Multi-Model Support

As of PR #263, LlamaFarm supports multiple models per project with OpenAI-compatible model field in chat requests.

Configuration

In your llamafarm.yaml:

runtime:
models:
- name: fast-model
provider: ollama
model: llama3.2:3b
- name: smart-model
provider: ollama
model: llama3.2:70b
default_model: fast-model

Using Different Models

The model field in chat completions requests is OpenAI-compatible and allows you to select which configured model to use:

curl -X POST http://localhost:8000/v1/projects/my-org/chatbot/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "smart-model",
"messages": [
{"role": "user", "content": "Explain quantum computing"}
]
}'

If model is not specified, the default_model from your configuration is used. This makes LlamaFarm a drop-in replacement for OpenAI's API with the added benefit of model selection.

Get Available Models

curl http://localhost:8000/v1/projects/my-org/chatbot/models

Rate Limiting and Performance

Concurrent Requests

The API handles concurrent requests efficiently:

  • Chat sessions are thread-safe with internal locking
  • Dataset processing can run asynchronously with Celery
  • Multiple chat sessions can be active simultaneously

Session Management

  • Sessions expire after 30 minutes of inactivity
  • Use X-No-Session header for stateless requests
  • Session cleanup happens automatically

Async Processing

For long-running operations (dataset processing):

  1. POST to the dataset actions endpoint ({"action_type":"process"}) to queue a Celery task
  2. Poll the task endpoint to check status
  3. Retrieve final results when state is SUCCESS

MCP (Model Context Protocol) Compatible Endpoints

LlamaFarm's API is compatible with the Model Context Protocol (MCP), allowing AI agents to interact with LlamaFarm programmatically. The following endpoints are tagged with mcp for easy discovery by MCP clients:

MCP-Compatible Operations

Project Management:

  • GET /v1/projects/{namespace} - List projects (operation ID: projects_list)
  • POST /v1/projects/{namespace} - Create project (operation ID: project_create)
  • GET /v1/projects/{namespace}/{project} - Get project (operation ID: project_get)
  • PUT /v1/projects/{namespace}/{project} - Update project (operation ID: project_update)
  • DELETE /v1/projects/{namespace}/{project} - Delete project (operation ID: project_delete)

Model Management:

  • GET /v1/projects/{namespace}/{project}/models - List models (operation ID: models_list)

Dataset Operations:

  • GET /v1/projects/{namespace}/{project}/datasets - List datasets (operation ID: dataset_list)
  • GET /v1/projects/{namespace}/{project}/datasets/strategies - List strategies (operation ID: dataset_strategies_list)
  • POST /v1/projects/{namespace}/{project}/datasets - Create dataset (operation ID: dataset_create)
  • DELETE /v1/projects/{namespace}/{project}/datasets/{dataset} - Delete dataset (operation ID: dataset_delete)
  • POST /v1/projects/{namespace}/{project}/datasets/{dataset}/actions - Dataset actions (operation ID: dataset_actions)
  • POST /v1/projects/{namespace}/{project}/datasets/{dataset}/data - Upload data (operation ID: dataset_data_upload)

RAG Operations:

  • POST /v1/projects/{namespace}/{project}/rag/query - Query RAG (operation ID: rag_query)
  • POST /v1/projects/{namespace}/{project}/rag/databases - Create database (operation ID: database_create)
  • GET /v1/projects/{namespace}/{project}/rag/databases/{database} - Get database (operation ID: database_get)
  • PATCH /v1/projects/{namespace}/{project}/rag/databases/{database} - Update database (operation ID: database_update)
  • DELETE /v1/projects/{namespace}/{project}/rag/databases/{database} - Delete database (operation ID: database_delete)

Task Management:

  • GET /v1/projects/{namespace}/{project}/tasks/{task_id} - Get task status (operation ID: task_get)

Using LlamaFarm with MCP Servers

You can configure LlamaFarm projects to expose tools through MCP servers, giving AI agents access to filesystems, databases, APIs, and custom business logic. See the MCP documentation for configuration examples.

Example: AI Agent with LlamaFarm MCP Tools

# AI agent can use LlamaFarm endpoints as tools
# through MCP protocol
{
"tool": "llamafarm_rag_query",
"arguments": {
"query": "What are the clinical trial requirements?",
"database": "fda_db",
"top_k": 5
}
}

Best Practices

Error Handling

Always check HTTP status codes and handle errors:

response=$(curl -s -w "\n%{http_code}" http://localhost:8000/v1/projects/my-org/chatbot)
http_code=$(echo "$response" | tail -n 1)
body=$(echo "$response" | head -n -1)

if [ "$http_code" -eq 200 ]; then
echo "Success: $body"
else
echo "Error ($http_code): $body"
fi

Using RAG Effectively

  1. Create datasets first: Upload and process files before querying
  2. Use appropriate top_k: Start with 5-10 results
  3. Set score thresholds: Filter low-quality results (e.g., 0.7)
  4. Test queries: Use the RAG query endpoint to test retrieval before chat

Chat Sessions

  1. Stateful conversations: Reuse session IDs for context
  2. Stateless queries: Use X-No-Session for one-off questions
  3. Clean up: Delete old sessions to free resources
  4. History access: Use history endpoint to debug conversations

Dataset Processing

  1. Upload first, process later: Separate ingestion from processing
  2. Use async for large datasets: Enable async processing for >10 files
  3. Monitor task status: Poll task endpoint for progress
  4. Handle duplicates: System automatically skips duplicate files

API Clients

Python Example

import requests

class LlamaFarmClient:
def __init__(self, base_url="http://localhost:8000"):
self.base_url = base_url
self.session = requests.Session()

def chat(self, namespace, project, message, session_id=None):
url = f"{self.base_url}/v1/projects/{namespace}/{project}/chat/completions"
headers = {}
if session_id:
headers["X-Session-ID"] = session_id

response = self.session.post(
url,
headers=headers,
json={
"messages": [{"role": "user", "content": message}]
}
)
response.raise_for_status()
return response.json()

def query_rag(self, namespace, project, query, database=None, top_k=5):
url = f"{self.base_url}/v1/projects/{namespace}/{project}/rag/query"
response = self.session.post(
url,
json={
"query": query,
"database": database,
"top_k": top_k
}
)
response.raise_for_status()
return response.json()

# Usage
client = LlamaFarmClient()
result = client.chat("my-org", "chatbot", "Hello!")
print(result["choices"][0]["message"]["content"])

JavaScript/TypeScript Example

interface ChatMessage {
role: "system" | "user" | "assistant";
content: string;
}

interface ChatRequest {
messages: ChatMessage[];
stream?: boolean;
rag_enabled?: boolean;
database?: string;
}

class LlamaFarmClient {
constructor(private baseUrl: string = "http://localhost:8000") {}

async chat(
namespace: string,
project: string,
messages: ChatMessage[],
sessionId?: string
): Promise<any> {
const headers: Record<string, string> = {
"Content-Type": "application/json",
};

if (sessionId) {
headers["X-Session-ID"] = sessionId;
}

const response = await fetch(
`${this.baseUrl}/v1/projects/${namespace}/${project}/chat/completions`,
{
method: "POST",
headers,
body: JSON.stringify({ messages }),
}
);

if (!response.ok) {
throw new Error(`API error: ${response.status}`);
}

return response.json();
}

async queryRAG(
namespace: string,
project: string,
query: string,
database?: string,
topK: number = 5
): Promise<any> {
const response = await fetch(
`${this.baseUrl}/v1/projects/${namespace}/${project}/rag/query`,
{
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({
query,
database,
top_k: topK,
}),
}
);

if (!response.ok) {
throw new Error(`API error: ${response.status}`);
}

return response.json();
}
}

// Usage
const client = new LlamaFarmClient();
const result = await client.chat("my-org", "chatbot", [
{ role: "user", content: "Hello!" },
]);
console.log(result.choices[0].message.content);

Troubleshooting

Common Issues

Problem: 404 Not Found when accessing project

  • Solution: Verify namespace and project name are correct. List projects to confirm.

Problem: Chat returns empty or error

  • Solution: Check that the model is configured correctly and Ollama is running.

Problem: RAG query returns no results

  • Solution: Ensure dataset is processed and database exists. Check RAG health endpoint.

Problem: Dataset processing stuck

  • Solution: Check Celery worker status. Use async processing and poll task endpoint.

Problem: Session not persisting

  • Solution: Ensure you're passing X-Session-ID header and not using X-No-Session.

Debugging Tips

  1. Check logs: Server logs are written to stdout
  2. Verify configuration: Use GET /v1/projects/{namespace}/{project} to inspect config
  3. Test health: Use /health endpoint to verify services are running
  4. Inspect tasks: For async operations, poll task endpoint for detailed error info
  5. Use curl verbose: Add -v flag to curl for detailed request/response info

Vision API (OCR & Document Extraction)

The Vision API provides OCR and document extraction capabilities through the main LlamaFarm API server. These endpoints proxy to the Universal Runtime, handling file uploads and base64 image conversion automatically.

Base URL: http://localhost:8000/v1/vision

OCR Endpoint

Extract text from images and PDFs using multiple OCR backends.

Endpoint: POST /v1/vision/ocr

Content-Type: multipart/form-data

Parameters:

FieldTypeRequiredDefaultDescription
filefileNo*-PDF or image file to process
imagesstringNo*-Base64-encoded images as JSON array
modelstringNosuryaOCR backend: surya, easyocr, paddleocr, tesseract
languagesstringNoenComma-separated language codes (e.g., en,fr)
return_boxesbooleanNofalseReturn bounding boxes for detected text

*Either file or images must be provided.

Supported File Types: PDF, PNG, JPG, JPEG, GIF, WebP, BMP, TIFF

Response:

{
"object": "list",
"data": [
{
"index": 0,
"text": "Extracted text from the document...",
"confidence": 0.95
}
],
"model": "surya",
"usage": {"images_processed": 1}
}

Example (File Upload):

curl -X POST http://localhost:8000/v1/vision/ocr \
-F "file=@document.pdf" \
-F "model=easyocr" \
-F "languages=en"

Example (Base64 Images):

curl -X POST http://localhost:8000/v1/vision/ocr \
-F 'images=["..."]' \
-F "model=surya" \
-F "languages=en"

Document Extraction Endpoint

Extract structured data from documents using vision-language models.

Endpoint: POST /v1/vision/documents/extract

Content-Type: multipart/form-data

Parameters:

FieldTypeRequiredDefaultDescription
filefileNo*-PDF or image file to process
imagesstringNo*-Base64-encoded images as JSON array
modelstringYes-HuggingFace model ID (e.g., naver-clova-ix/donut-base-finetuned-docvqa)
promptsstringNo-Comma-separated prompts for VQA task
taskstringNoextractionTask type: extraction, vqa, classification

*Either file or images must be provided.

Supported Models:

ModelDescription
naver-clova-ix/donut-base-finetuned-cord-v2Receipt/invoice extraction
naver-clova-ix/donut-base-finetuned-docvqaDocument Q&A
microsoft/layoutlmv3-base-finetuned-docvqaDocument Q&A with layout

Response:

{
"object": "list",
"data": [
{
"index": 0,
"confidence": 0.9,
"text": "<s_docvqa><s_question>What is the total?</s_question><s_answer>$15.99</s_answer>",
"fields": [
{"key": "question", "value": "What is the total?", "confidence": 0.9},
{"key": "answer", "value": "$15.99", "confidence": 0.9}
]
}
],
"model": "naver-clova-ix/donut-base-finetuned-docvqa",
"task": "vqa",
"usage": {"documents_processed": 1}
}

Example (Document VQA with File Upload):

curl -X POST http://localhost:8000/v1/vision/documents/extract \
-F "file=@receipt.pdf" \
-F "model=naver-clova-ix/donut-base-finetuned-docvqa" \
-F "prompts=What is the store name?,What is the total amount?" \
-F "task=vqa"

Example (Extraction with Base64):

curl -X POST http://localhost:8000/v1/vision/documents/extract \
-F 'images=["..."]' \
-F "model=naver-clova-ix/donut-base-finetuned-cord-v2" \
-F "task=extraction"

ML API (Custom Classifiers & Anomaly Detection)

The ML API provides custom text classification and anomaly detection capabilities through the main LlamaFarm API server. These endpoints proxy to the Universal Runtime with automatic model versioning support.

Base URL: http://localhost:8000/v1/ml

Model Versioning

When overwrite: false (default), models are saved with timestamps like my-model_20251215_155054. Use the -latest suffix (e.g., my-model-latest) to automatically resolve to the newest version.

Endpoints supporting -latest resolution:

  • /v1/ml/classifier/predict, /v1/ml/classifier/load
  • /v1/ml/anomaly/score, /v1/ml/anomaly/detect, /v1/ml/anomaly/load

Note: The fit endpoints do NOT support -latest since they create new models.

Custom Text Classification (SetFit)

Train custom classifiers with as few as 8-16 examples per class using SetFit (Sentence Transformer Fine-tuning).

Fit Classifier

Train a new text classifier.

Endpoint: POST /v1/ml/classifier/fit

Request Body:

{
"model": "intent-classifier",
"base_model": "sentence-transformers/all-MiniLM-L6-v2",
"training_data": [
{"text": "I need to book a flight to NYC", "label": "booking"},
{"text": "Reserve a hotel room for me", "label": "booking"},
{"text": "Cancel my reservation please", "label": "cancellation"},
{"text": "I want to cancel my booking", "label": "cancellation"},
{"text": "What time does the flight leave?", "label": "inquiry"},
{"text": "How much does it cost?", "label": "inquiry"}
],
"num_iterations": 20,
"batch_size": 16,
"overwrite": false
}

Request Fields:

FieldTypeRequiredDefaultDescription
modelstringYes-Base name for the classifier
base_modelstringNoall-MiniLM-L6-v2Sentence transformer to fine-tune
training_dataarrayYes-List of {"text", "label"} objects
num_iterationsintNo20Contrastive learning iterations
batch_sizeintNo16Training batch size
overwriteboolNofalseIf false, version with timestamp
Description Field

To add a description to a model, use the /v1/ml/classifier/save endpoint after fitting. The description parameter in fit requests is not persisted.

Response:

{
"object": "fit_result",
"model": "intent-classifier-test_20260102_202450",
"base_model": "sentence-transformers/all-MiniLM-L6-v2",
"samples_fitted": 40,
"num_classes": 4,
"labels": ["booking", "cancellation", "complaint", "inquiry"],
"training_time_ms": 6751.66,
"status": "fitted",
"auto_saved": true,
"saved_path": "~/.llamafarm/models/classifier/intent-classifier-test_20260102_202450",
"base_name": "intent-classifier-test",
"versioned_name": "intent-classifier-test_20260102_202450",
"overwrite": false
}

Example:

curl -X POST http://localhost:8000/v1/ml/classifier/fit \
-H "Content-Type: application/json" \
-d '{
"model": "intent-classifier",
"training_data": [
{"text": "I need to book a flight to NYC", "label": "booking"},
{"text": "Reserve a hotel room for me", "label": "booking"},
{"text": "Cancel my reservation please", "label": "cancellation"},
{"text": "I want to cancel my booking", "label": "cancellation"},
{"text": "What time does the flight leave?", "label": "inquiry"},
{"text": "How much does it cost?", "label": "inquiry"},
{"text": "I am very unhappy with the service", "label": "complaint"},
{"text": "This is unacceptable quality", "label": "complaint"}
],
"num_iterations": 20
}'

Predict with Classifier

Classify texts using a trained model.

Endpoint: POST /v1/ml/classifier/predict

Request Body:

{
"model": "intent-classifier-latest",
"texts": [
"Book me a flight to Paris tomorrow",
"Cancel my upcoming trip",
"What are the check-in times?",
"This is absolutely terrible service"
]
}

Response:

{
"object": "list",
"data": [
{
"text": "Book me a flight to Paris tomorrow",
"label": "booking",
"score": 0.66,
"all_scores": {"booking": 0.66, "cancellation": 0.11, "complaint": 0.11, "inquiry": 0.13}
},
{
"text": "Cancel my upcoming trip",
"label": "cancellation",
"score": 0.79,
"all_scores": {"booking": 0.09, "cancellation": 0.79, "complaint": 0.07, "inquiry": 0.05}
},
{
"text": "What are the check-in times?",
"label": "inquiry",
"score": 0.68,
"all_scores": {"booking": 0.15, "cancellation": 0.06, "complaint": 0.11, "inquiry": 0.68}
},
{
"text": "This is absolutely terrible service",
"label": "complaint",
"score": 0.77,
"all_scores": {"booking": 0.06, "cancellation": 0.08, "complaint": 0.77, "inquiry": 0.10}
}
],
"total_count": 4,
"model": "intent-classifier-test_20260102_202450"
}

Example:

curl -X POST http://localhost:8000/v1/ml/classifier/predict \
-H "Content-Type: application/json" \
-d '{
"model": "intent-classifier-latest",
"texts": [
"Book me a flight to Paris tomorrow",
"Cancel my upcoming trip",
"What are the check-in times?",
"This is absolutely terrible service"
]
}'

Save Classifier

Save a trained classifier to disk for production use.

Endpoint: POST /v1/ml/classifier/save

Request Body:

{
"model": "intent-classifier_20251215_155054"
}

Response:

{
"object": "save_result",
"model": "intent-classifier_20251215_155054",
"path": "~/.llamafarm/models/classifier/intent-classifier_20251215_155054",
"status": "saved"
}

Load Classifier

Load a previously saved classifier.

Endpoint: POST /v1/ml/classifier/load

Request Body:

{
"model": "intent-classifier-latest"
}

Response:

{
"object": "load_result",
"model": "intent-classifier_20251215_155054",
"status": "loaded"
}

List Classifier Models

Endpoint: GET /v1/ml/classifier/models

Response:

{
"object": "list",
"data": [
{"name": "intent-classifier_20251215_155054", "labels": ["booking", "cancellation", "inquiry"]}
]
}

Delete Classifier Model

Endpoint: DELETE /v1/ml/classifier/models/{model_name}

The model_name is the directory name (e.g., intent-classifier_20251215_155054). SetFit classifiers are stored as directories under ~/.llamafarm/models/classifier/.


Anomaly Detection

Train anomaly detectors on normal data and detect outliers in new data.

Fit Anomaly Detector

Train an anomaly detection model.

Endpoint: POST /v1/ml/anomaly/fit

Request Body (Numeric Data):

{
"model": "sensor-detector",
"backend": "isolation_forest",
"data": [
[22.1, 1024], [23.5, 1100], [21.8, 980],
[24.2, 1050], [22.7, 1080], [23.1, 990]
],
"contamination": 0.1,
"overwrite": false
}

Request Body (Mixed Data with Schema):

{
"model": "api-monitor",
"backend": "isolation_forest",
"data": [
{"response_time_ms": 100, "bytes": 1024, "method": "GET", "user_agent": "Mozilla/5.0"},
{"response_time_ms": 105, "bytes": 1100, "method": "POST", "user_agent": "Chrome/90.0"}
],
"schema": {
"response_time_ms": "numeric",
"bytes": "numeric",
"method": "label",
"user_agent": "hash"
},
"contamination": 0.1
}

Request Fields:

FieldTypeRequiredDefaultDescription
modelstringNo"default"Model identifier
backendstringNo"isolation_forest"Algorithm: isolation_forest, one_class_svm, local_outlier_factor, autoencoder
dataarrayYes-Training data (numeric arrays or dicts)
schemaobjectNo-Feature encoding schema (required for dict data)
contaminationfloatNo0.1Expected proportion of anomalies (must be >0 and ≤0.5)
overwriteboolNofalseIf false, version with timestamp

Response:

{
"object": "fit_result",
"model": "sensor_anomaly_detector_20260102_202438",
"backend": "isolation_forest",
"samples_fitted": 30,
"training_time_ms": 85.77,
"model_params": {
"backend": "isolation_forest",
"contamination": 0.05,
"threshold": 0.894,
"input_dim": 1
},
"status": "fitted",
"base_name": "sensor_anomaly_detector",
"versioned_name": "sensor_anomaly_detector_20260102_202438",
"overwrite": false
}

Example (Temperature Sensor Data):

# Train on normal temperature readings (20-25°C range)
curl -X POST http://localhost:8000/v1/ml/anomaly/fit \
-H "Content-Type: application/json" \
-d '{
"model": "sensor_anomaly_detector",
"backend": "isolation_forest",
"data": [
[22.1], [23.5], [21.8], [24.2], [22.7],
[23.1], [21.5], [24.8], [22.3], [23.9],
[21.2], [24.5], [22.8], [23.2], [21.9],
[24.1], [22.5], [23.7], [21.6], [24.3]
],
"contamination": 0.05
}'

Score Anomalies

Score all data points for anomalies.

Endpoint: POST /v1/ml/anomaly/score

Request Body:

{
"model": "sensor-detector-latest",
"backend": "isolation_forest",
"data": [[22.0], [23.5], [0.0], [100.0], [21.5]],
"threshold": 0.5
}

Response:

{
"object": "list",
"data": [
{"index": 0, "score": 0.23, "is_anomaly": false, "raw_score": 0.12},
{"index": 1, "score": 0.21, "is_anomaly": false, "raw_score": 0.10},
{"index": 2, "score": 0.89, "is_anomaly": true, "raw_score": -0.45},
{"index": 3, "score": 0.95, "is_anomaly": true, "raw_score": -0.52},
{"index": 4, "score": 0.22, "is_anomaly": false, "raw_score": 0.11}
],
"summary": {
"total_points": 5,
"anomaly_count": 2,
"anomaly_rate": 0.4,
"threshold": 0.5
}
}

Detect Anomalies

Detect anomalies (returns only anomalous points).

Endpoint: POST /v1/ml/anomaly/detect

Same request format as /score, but response only includes anomalous points.

Example (Detecting Temperature Anomalies):

# Test with mix of normal and anomalous readings
curl -X POST http://localhost:8000/v1/ml/anomaly/detect \
-H "Content-Type: application/json" \
-d '{
"model": "sensor_anomaly_detector-latest",
"backend": "isolation_forest",
"data": [[22.0], [23.5], [0.0], [21.5], [100.0], [24.0], [-10.0], [22.8], [35.0], [23.2]],
"threshold": 0.5
}'

Response:

{
"object": "list",
"data": [
{"index": 2, "score": 0.61, "raw_score": 0.65},
{"index": 4, "score": 0.60, "raw_score": 0.64},
{"index": 6, "score": 0.61, "raw_score": 0.65},
{"index": 8, "score": 0.60, "raw_score": 0.64}
],
"total_count": 4,
"model": "sensor_anomaly_detector_20260102_202438",
"backend": "isolation_forest",
"summary": {
"anomalies_detected": 4,
"threshold": 0.5
}
}

The anomalies detected are:

  • Index 2: 0.0°C (freezing - way below normal)
  • Index 4: 100.0°C (boiling - way above normal)
  • Index 6: -10.0°C (sub-freezing)
  • Index 8: 35.0°C (elevated temperature)

Save Anomaly Model

Endpoint: POST /v1/ml/anomaly/save

Request Body:

{
"model": "sensor-detector_20251215_160000",
"backend": "isolation_forest"
}

Load Anomaly Model

Endpoint: POST /v1/ml/anomaly/load

Request Body:

{
"model": "sensor-detector-latest",
"backend": "isolation_forest"
}

List Anomaly Models

Endpoint: GET /v1/ml/anomaly/models

Delete Anomaly Model

Endpoint: DELETE /v1/ml/anomaly/models/{filename}

The filename includes the file extension (e.g., sensor-detector_isolation_forest.pkl). Anomaly models are stored as .pkl files under ~/.llamafarm/models/anomaly/.


Universal Runtime API

The Universal Runtime is a separate service (port 11540) that provides specialized ML endpoints for document processing, text analysis, embeddings, and anomaly detection.

Base URL: http://localhost:11540

Using Vision APIs

For OCR and document extraction, you can use either:

  • LlamaFarm API (/v1/vision/*) - Accepts file uploads directly, converts PDFs to images automatically
  • Universal Runtime (/v1/ocr, /v1/documents/extract) - Accepts base64 images or file IDs

Starting the Universal Runtime

nx start universal-runtime

Universal Runtime Endpoints

CategoryEndpointDescription
HealthGET /healthRuntime health and loaded models
ModelsGET /v1/modelsList currently loaded models
ChatPOST /v1/chat/completionsOpenAI-compatible chat completions
EmbeddingsPOST /v1/embeddingsGenerate text embeddings
FilesPOST /v1/filesUpload files for processing
FilesGET /v1/filesList uploaded files
FilesGET /v1/files/{id}Get file metadata
FilesGET /v1/files/{id}/imagesGet file as base64 images
FilesDELETE /v1/files/{id}Delete uploaded file
OCRPOST /v1/ocrExtract text from images (base64)
DocumentsPOST /v1/documents/extractExtract structured data (base64)
ClassificationPOST /v1/classifyClassify text using pre-trained models (sentiment, etc.)
Custom ClassifierPOST /v1/classifier/fitTrain custom classifier (SetFit few-shot)
Custom ClassifierPOST /v1/classifier/predictClassify with trained custom model
Custom ClassifierPOST /v1/classifier/saveSave trained classifier
Custom ClassifierPOST /v1/classifier/loadLoad saved classifier
Custom ClassifierGET /v1/classifier/modelsList saved classifiers
Custom ClassifierDELETE /v1/classifier/models/{name}Delete saved classifier
NERPOST /v1/nerNamed entity recognition
RerankingPOST /v1/rerankRerank documents by relevance
AnomalyPOST /v1/anomaly/fitTrain anomaly detector
AnomalyPOST /v1/anomaly/scoreScore data for anomalies
AnomalyPOST /v1/anomaly/detectDetect anomalies (filtered)
AnomalyPOST /v1/anomaly/saveSave trained model
AnomalyPOST /v1/anomaly/loadLoad saved model
AnomalyGET /v1/anomaly/modelsList saved models
AnomalyDELETE /v1/anomaly/models/{filename}Delete saved model
Classification Endpoints
  • /v1/classify (Universal Runtime only) - Use pre-trained HuggingFace models for sentiment, spam detection, etc. This endpoint is NOT proxied through the main LlamaFarm server.
  • /v1/ml/classifier/* (LlamaFarm Server) - Train and use custom classifiers with your own categories via SetFit. Available at http://localhost:8000.

Quick Examples

OCR:

curl -X POST http://localhost:11540/v1/ocr \
-H "Content-Type: application/json" \
-d '{"model": "surya", "images": ["base64..."], "languages": ["en"]}'

Embeddings:

curl -X POST http://localhost:11540/v1/embeddings \
-H "Content-Type: application/json" \
-d '{"model": "sentence-transformers/all-MiniLM-L6-v2", "input": "Hello world"}'

Custom Classification (SetFit):

# Train a custom classifier with few examples
curl -X POST http://localhost:11540/v1/classifier/fit \
-H "Content-Type: application/json" \
-d '{
"model": "intent-classifier",
"training_data": [
{"text": "Book a flight", "label": "booking"},
{"text": "Cancel my order", "label": "cancellation"}
]
}'

# Classify new texts
curl -X POST http://localhost:11540/v1/classifier/predict \
-H "Content-Type: application/json" \
-d '{"model": "intent-classifier", "texts": ["I need to reserve a room"]}'

Anomaly Detection:

# Train
curl -X POST http://localhost:11540/v1/anomaly/fit \
-H "Content-Type: application/json" \
-d '{"model": "my-detector", "backend": "isolation_forest", "data": [[1,2],[3,4]]}'

# Detect
curl -X POST http://localhost:11540/v1/anomaly/detect \
-H "Content-Type: application/json" \
-d '{"model": "my-detector", "data": [[1,2],[100,200]]}'

For complete documentation, see:


Next Steps