Quickstart
Get LlamaFarm installed, ingest a dataset, and run your first RAG-powered chat in minutes.
1. Prerequisites
- Ollama — Local model runtime (or any OpenAI-compatible provider)
2. Install LlamaFarm
Option A: Desktop App (Easiest)
Download the all-in-one desktop application:
| Platform | Download |
|---|---|
| Mac (Universal) | ⬇️ Download |
| Windows | ⬇️ Download |
| Linux (x86_64) | ⬇️ Download |
| Linux (arm64) | ⬇️ Download |
The desktop app bundles everything you need—no additional installation required.
Option B: CLI Installation
macOS / Linux:
curl -fsSL https://raw.githubusercontent.com/llama-farm/llamafarm/main/install.sh | bash
Windows (PowerShell):
irm https://raw.githubusercontent.com/llama-farm/llamafarm/main/install.ps1 | iex
Manual Download:
Download the lf binary directly from the releases page:
| Platform | Binary |
|---|---|
| macOS (Apple Silicon) | lf-darwin-arm64 |
| macOS (Intel) | lf-darwin-amd64 |
| Linux (x64) | lf-linux-amd64 |
| Linux (arm64) | lf-linux-arm64 |
| Windows (x86_64) | lf-windows-amd64.exe |
After downloading, make it executable and add to your PATH:
chmod +x lf-darwin-arm64
sudo mv lf-darwin-arm64 /usr/local/bin/lf
Verify installation:
lf --help
3. Configure Your Runtime (Ollama)
For best RAG results with longer documents, increase the Ollama context window:
- Open the Ollama app
- Navigate to Settings → Advanced
- Adjust the context window size (recommended: 32K+ for documents)
Pull a model if you haven't already:
ollama pull llama3.2
ollama pull nomic-embed-text # For embeddings
4. Create a Project
lf init my-project
cd my-project
This creates llamafarm.yaml with default runtime, prompts, and RAG configuration.
5. Start LlamaFarm
lf start
This command:
- Starts the API server and Universal Runtime natively
- Opens the interactive chat TUI
- Launches the Designer web UI at
http://localhost:8000
Hit Ctrl+C to exit the chat UI when you're done.
Prefer a visual interface? Open http://localhost:8000 in your browser to access the Designer—manage projects, upload datasets, configure models, and test prompts without touching the command line.
See the Designer documentation for details.
Running Services Manually
For development, you can run services individually:
git clone https://github.com/llama-farm/llamafarm.git
cd llamafarm
npm install -g nx
nx init --useDotNxInstallation --interactive=false
# Start both services
nx dev
# Or in separate terminals:
nx start server # Terminal 1
nx start universal-runtime # Terminal 2
6. Chat with Your Project
# Interactive chat (opens TUI)
lf chat
# One-off message
lf chat "What can you do?"
Useful options:
--no-rag— Bypass retrieval, hit the model directly--database,--retrieval-strategy— Override RAG behavior--curl— Print the equivalent curl command
7. Create and Populate a Dataset
# Create a dataset
lf datasets create -s pdf_ingest -b main_db research-notes
# Upload documents (supports globs/directories); auto-processes by default
lf datasets upload research-notes ./examples/fda_rag/files/*.pdf
# For batching without processing:
# lf datasets upload research-notes ./examples/fda_rag/files/*.pdf --no-process
8. Process Documents
lf datasets process research-notes # Only needed if you skipped auto-processing
This sends documents through the RAG pipeline—parsing, chunking, embedding, and indexing.
For large PDFs, processing may take a few minutes. The CLI shows progress indicators.
9. Query with RAG
lf rag query --database main_db "What are the key findings?"
Useful flags:
--top-k 10— Number of results--filter "file_type:pdf"— Metadata filtering--include-metadata— Show document sources--include-score— Show relevance scores
10. Next Steps
- Designer Web UI — Visual interface for managing projects
- Configuration Guide — Deep dive into
llamafarm.yaml - RAG Guide — Strategies, parsers, and retrieval
- ML Models — Classifiers, OCR, anomaly detection
- API Reference — Full REST API documentation
- Examples — Run the FDA and Raleigh demos end-to-end
Need help? Chat with us on Discord or open a discussion.